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A strengthened Lindblad inequality has been proved. We have applied this result to prove a gendralized
theorem in nonequilibrium thermodynamics. Information processing also can be considered as some thermo-
dynamic process. From this point of view we have proved a strengthened data processing inequality in
qguantum information theoryS1063-651X98)05307-(

PACS numbdss): 05.30—d, 03.65.Bz

There are close connections between statistical thermodylescribed by a non-Hermitian time-independent Hamiltonian
namics and information theorj1,2]. Physical ideas have [8] or by quantum Langevin equatiohQ].
played an important role as sources of information theory One of the most important quantities which can be de-
[1]. On the other hand, the concept of information is crucialfined for statistical systems is entrog9,8,1,2,4,%. This
for understanding some important physical problems such aguantity was introduced in quantum statistical physics by
Maxwell's “demon” [2] or the general problem of quantum von Neumann
correlation between two subsysten®.

In this paper we concentrate on the two connected prob- S(p)=—trplnp. (4)
lems. These are thEl-theorem problem in nonequilibrium o )
quantum statistical thermodynamics and the problem ofl N concept of entropy has at least three main ingredients.
quantum data processing in quantum information theory. The In the first, entropy of a macroscopic statistical system
concepts of entropyor other entropy-like measuneand H can only increase |f the system tends to e_qumbrlum. There-
theorem are particularly important iguantum statistical fore entropy is maximal at this statg. This is the well I_<nown
physics because a correct definition is only possible in thé! theorem. We want to stress that increasing of @gjwith
framework of quantum mechanics. In classical theory enfime can be violated if the evolution of the system is not
tropy can only be introduced in a somewhat limited and ar-Stationary or Markoviaf9,8] or the system is open or me-
tificial manner[4,5]. Suppose that a quantum system is de-S0Scopid11]. For example, the entropy of von Neumann can
scribed by a density matrip(t) at the moment. In the exhibit v_axactly periodic behgwor for some open §y§tems
general case evolution of the nonequilibrium system in thd12]- This means that Eq4) is not the relevant statistical

Markovian regime is described by some general quantunfunction for such systems. Entropy is an additive function,
evolution operator and also invariant of a unitary transformation.

In the second, entropy can be regarded as a measure of the
K(t',t)p(t)=p(t"). (1) lack of information about a system. Therefdsgp) should
increase after a coarse-graining procedur8,5|

In the most general cagé must be linear, completely posi-

tive, and trace preservirfi®,7], and has standard representa- S( 2 Pipi) 22 piS(p:) 2 pi=1p=0 (5)
tion ] i 5 '

- A where the information about coordindtés lost (i can also
sz% AupAs, % AAL=T, @ pe continuous ¢

In the third, entropy can be considered as a measure of the
which was introduced if7]. This representation is equiva- amount of chaos, or, to what extent the density mairban
lent to the so-called unitary representation where the nonunbe considered as “mixed.” Indeed, the non-negat{p) is
tary evolution of the system is regarded as a part of theero for a pure density matrix, and is maximal for homoge-
unitary evolution of some larger system. Equati@ con-  neousp. Entropy also is an additive quantity. Equati¢t
tains unitary transformations, nonselective measurementsan also be viewed as one of the basic statements of equilib-

partial traces, etc. For a non-Markovian c#salso depends rium statistical physic49,8,4. For example, after several

on the “history” from some initial timet, to t’ [8]. assumptions the most important relation in thermostatics:
If the evolution of the system is in thetationary Markov- TdS=dE+pdV, can be derived from Eq4) (where all
ian regime then symbols have their ordinary meanjng
Now the following questions arise. Is it possible to define
K(t',t)=K(t' —t). (3)  an entropylike function for a mesoscopic statistical system or

for an open system? Is it possible to save in this definition
Stationary Markovian regime is a reasonable conjecture ithe main aspects of usual entropy? A large number of papers
the system is not far from equilibriurf®,8], or it can be and books is devoted to these questih8,13. The answer
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is “yes” at least in the case when the evolution of a system The conclusion is the following: Eq9) is a correct gen-

is stationary Markovian, and has a well defined stationaneralization of von Neumann entropy to the more general

distribution. The concrete form of this distribution is not im- case, and the generalized H theorem can be proved with the

portant. Before the definition we need some mathematics. assumptions about the evolution of the system only.
Quantum relative entropy between two density matrices Now the following question arises. Can we generalize Eq.

p1, p2 is defined as (7) without any restrictions? If the answer is yes, then we can
prove with this result a more general relation. Let us assume
S(pallp2) =tr(p1Inp1—p1lnp,). (6) in formula (7) that
This positive quantity was introduced by Umegék#l] and R=c&,+(1-¢)C,, (12)

characterizes the degree of “closeness” of density matrices

p1, p2- The properties of quantum relative information were,; yare C, is defined by Kraussian representatiok

reviewed by Ohyd15]. Here only two basic properties are = u)0|, (uli)=6,, , (0]0y=1, 0<c<1. In othgr
. ) mpt ’ .

mentioned words, for any operatags, C,p=|0)(0|. Now from Eqs.(7)

7) and (8) we get

5(P1||P2)>S(RP1||RP2),

SOp1+ (1N pal oyt (1-N)ay)
<\S(py||oy)+(1=N)S(pyl|o2), (8) <cS(Cyp||C10) +(1-¢)S(Cp|Co0)

S(Kp||Ka)=S(cCip+(1—c)Cyhp||cCio+(1—c)Cy0)

where 0<\=<1. The first inequality was proved by Lindblad =(1=c)S(p[|0). (13

[16]. P . .
. . T We see that iK is represented in the forif12) the ordinary
Now for a system with stationary distribution;, and Lindblad inequality can be strengthened.

Mark_ovia_n sta_tionary evolution operatdf( the following Now we need some general results from the theory of
function is defined: linear operator§18]. Let two Hermitian operatord and B
have the spectra;<---<a,, b;<---<b,. For the spec-
—-S t . 9 1 n» Y1 n
(p(V)lps) © trumc,<---=<c, of the operatolC=A+B we have
This function is additive, and also increases after coarse-
graining procedure as we see from E@). Further, Eq.(7),
which can be written as wherek=1. ... n. If

a;+by=c=by+a,, bita=c=a+b,, (19

=S(Kp(1)[|ps)=—S(p(1)]| ps), (10 p'=Kp=cCyip+(1—c)Crp=c|0)O0|+(1-c)o,

15
is theH theorem for Eq(9). (15

The definition(9) is closely related to the functions which and p;<---<p/, o;<---<o, are the spectra op’, o
are used in usual equilibrium statistical physics. A very largehen we have
closed statistical system can be described by microcanonical

distribution wherep; can be represented as a unit mattp p1—C<oy(1-c)=min(p;,py—C),

to some unessential factgrsn this case Eq(9) reduces to (16)
Eqg. (4) (at least in the case of finite dimensional Hilbert ., ,

space, and from Eq.(10) we have the usuaH theorem. maxX(py,px—C)<oW(1-c)=<py,

Further, it is well known that for a closed macroscopic sys- ] - o )
tem canonical and microcanonical distributions are equivawherek=2, ... n. We definec(K,p) as the minimal eigen-

lent (except some special cases like second-order phase travalue of p” and c(K)=min,c(K,p) where minimization is
sitions. But in some sense canonical distribution has a largetaken by all density matrices for the fixed Hilbert space.
area of application because it can describe some mesoscopiéth the well known results of operator thedry8] we can

or quasiopen systeni8,4]. If we take pg=exp(—pBH)/Z in  write

Eq. (9) (where B is inverse temperature, ard is Hamil- . .

tonian then c(K)=min min (4|Kp|s), 17

P (Yly=1
S(p(t —InZ=tr(plnp)+ Btr(Hp)= BF, 11 L
(p(V)lps) (plnp)+ ptr(Hp)=p (D where the second minimization is taken by all normal vectors

whereF is the usual free energy. Therefore for the case ofn the Hilbert space. For any density matfixwe get to the
canonical distribution we have a slightly different formkdf  formula (12) wherec is defined in Eq(17) andC, is some
theorem: the free energy can only decrease if the systemeneral evolution operator. Now from Eg4.2), (13), and

tends to equilibriuni9,8,4,13. (17) we get the strengthened Lindblad inequality
Is the physically relevant generalization of von Neumann ~ ~
entropy defined uniquely? This important question was in- (1—¢)S(p4|p2)=S(Kp4||Kpy). (18

vestigated i 17]. The author showed that Eg&) and (8) _
with some other mathematical conditions are sufficient forEquations(17) and (18) are our general results. Of course
the determination of Eq6). there are many evolution operatdtswith c¢(K)=0 but later
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we shall show that our results can be nontrivial because for |(p;R):S(Rp)_S(iR®R(|¢R><¢R|))’ (21)

some simple but physically important cas@) is nonzero.
From Eqgs(17) and(18) we immediately get to the strength- R
enedH theorem which gives us some information about the 1R K(|¢R)(yR) =2 Vpipj| #f)( oI @K (| i) w5)).
speed of relative entropy decrease. An analog of &8) b 22
exists also in classical information thedty9]. Equation(18) (22
can also be regarded as a bound for entropy production. Th
quantity is very important in nonequilibrium statistical me-
chanicg[9,8].
We now discuss application of this result to quantum data
processing. | . | =3 pilwdeled, (sfled=6;, (@3
Quantum information theory is a new field with potential |
applications for the conceptual foundation of quantum me-
chanics. It appears to be the basis for a proper understanding trel g™ YR =p. (24)
of the emerging fields of quantum computation, communica-
tion, and cryptographysee[6] for references Quantum in- Here{|¢iR>} is some orthonormal set. The definition is inde-
formation theory is concerned with quantum bigubity pendent of the concrete choice of this g&t Mutual quan-
rather than bits. Qubits can exist in superposition or entum information is the decrease of entropy after the action of

tanglement states with other qubits, a notion completely inK due to the possible distortion of entanglement state. This
accessible for classical mechanics. More generally, quantuuantity is not symmetric with respect to the interchanging
information theory contains two distinct types of problem. of input and output and can be positive, negative, or zero in
The first type describes transmission of classical informatiogntrast with Shannon mutual information in classical
through a quantum channéhe channel can be noisy or theory.

noiseless In such a scheme bits are encoded as some quan- |t has been shown that E(R1) can be the upper bound of
tum states and only these states or their tensor products afige capacity of a quantum chanfi@P]. Using this value the
transmitted. In the second case arbitrary superposition oduthors[22] have proved the converse coding theorem for a
these states or entanglement states is transmitted. In the figghantum source with respect to the so-called entanglement

case the problems can be solved by methods of classicglielity [6]. This fidelity is absolutely adequate for quantum
information theory, but in the second case new phy3|cal rePdata transmission or compression.

Rihere S(p) is the entropy of von Neumann ang® is a
purification of p,

resentations are needed. _ . _ In Ref.[21] the authors prove a data processing inequality
Mutual information is the most important ingredient of
information theory. In classical theory this quantity was in- |(p'R1)>|(p'k2Rl). (25)

troduced by Shannofl9]. The mutual information between
two ensembles of random variabl¥sY (for example, these

ensembles can be input and output for a noisy channel The quantum information cannot increase after actioK of

In [22] we found an alternative derivation of this result
which is simpler than the derivation ¢21]. In the present
paper we show that this inequality can be strengthened. The
. data processing inequality is a very important property of
is the decrease of the entropy ¥fdue to the knowledge 3| information. This is an effective tool for proving gen-

aboutY, and conversely with interchanging andY. Here o5 yesuits and the first step toward identification of a physi-
H(Y) andH(Y/X) are Shannon entropy and mutual entropy 4 quantity as mutual information.

[19]. Mutual information in the quantum case must take into  Now we briefly recall the derivation of the data process-

account the specific character of the quantum information ag,q inequality. The formalism of relative quantum entropy is
it is described above. The first reasonable definition of th|§,ery useful in this context.

guantity was introduced by Lloyi®0], and independently by We have
Schumacher and Nielsd21]. Suppose a quantum system
with density matrix

L(X,Y)=H(Y)—H(YIX), (19

SARSK (| (¥R 1R@K (pR@p))

_ _ (1R K R\/, R R ?
pZEi p||¢|><¢l|’ EI pi=1. (20) S ®K(|¢ ><¢ |))+S(P )+S(Kp). (26)
Here
We only assume thdt/;| #;)=1 and the states may be non-
orthogonal. The noisy quantum channel can be described by pRzizj \/FDH ¢ipe><¢}q|<l/li|¢j>. 27)

some general quantum evolution opera%or
As follows from the definition of quantum information
transmission, a possible distortion of entanglement ofust ~ Now from the Lindblad inequality we have
be taken into account. In other words, a definition of mutual
quantum information must contain the possible distortion ofS(1Re K (|4R)(4R|)|| 1R K (pRep))
the relative phases of the quantum ensenfblg)}. Mutual N .
quantum information is defined §20,21] =S(1R K K| (R || 1R K Ko (pR@ p)).  (28)
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From this formula we have E¢25). ~ where 1 o4, o, are the unit matrix and the first and the
Now we can prove the strengthened data processing insecond Pauli matrices. Equati(8t) also has physical mean-
equality. LetK, in (28) be represented in the forfi2). ing as an evolution operator for a two-dimensional open sys-

From Egs.(7) and (12) we get tem. _ o _ . _
Any density matrix in two-dimensional Hilbert space can
SARDK K1 (| ) (w1 1R@ KK 1 (pR® p)) be represented in the Bloch form
<—(1-¢)SARa C,R (| (yM)) p=(1+ao)l2, (32)
+S(pR)+(1—¢)S(E,K p). (29 wherea is a real vector wita]<1. Now we have
And we have Krel(1+a0)/2]=(1+bo)/2, (33)
- 0 o where b= (a;x,a,X,a3(2x—1)). After simple calculations
=R (piR1)=1(piRKy). (30)  Where b=(@ux.azxax(2x=1)) P
get
Now we consider the simplest example of a noisy quantum S N a lou
channel: A two-dimensional, two Pauli chanfi2B] with the c(Krp)=(1-|2x=1])/2. (34
following Krauss representation: We conclude by reiterating the main results: the Lindblad
. inequality can be generalized. We have presented results not
A= \/§1, A= (1-Xx)I204, only about increasing of entropy and decreasing of mutual
quantum information but also about the speed of these pro-
Az=—iJ(1-x)/20,, 0O0=x=<1 (31 cesses.
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