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Strengthened Lindblad inequality: Applications in nonequilibrium thermodynamics and
quantum information theory
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A strengthened Lindblad inequality has been proved. We have applied this result to prove a generalizedH
theorem in nonequilibrium thermodynamics. Information processing also can be considered as some thermo-
dynamic process. From this point of view we have proved a strengthened data processing inequality in
quantum information theory.@S1063-651X~98!05307-0#

PACS number~s!: 05.30.2d, 03.65.Bz
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There are close connections between statistical therm
namics and information theory@1,2#. Physical ideas have
played an important role as sources of information the
@1#. On the other hand, the concept of information is cruc
for understanding some important physical problems suc
Maxwell’s ‘‘demon’’ @2# or the general problem of quantum
correlation between two subsystems@3#.

In this paper we concentrate on the two connected pr
lems. These are theH-theorem problem in nonequilibrium
quantum statistical thermodynamics and the problem
quantum data processing in quantum information theory.
concepts of entropy~or other entropy-like measures! andH
theorem are particularly important inquantum statistical
physics because a correct definition is only possible in
framework of quantum mechanics. In classical theory
tropy can only be introduced in a somewhat limited and
tificial manner@4,5#. Suppose that a quantum system is d
scribed by a density matrixr(t) at the momentt. In the
general case evolution of the nonequilibrium system in
Markovian regime is described by some general quant
evolution operator

K̂~ t8,t !r~ t !5r~ t8!. ~1!

In the most general caseK̂ must be linear, completely pos
tive, and trace preserving@6,7#, and has standard represen
tion

K̂r5(
m

Am
† rAm , (

m
AmAm

† 51̂, ~2!

which was introduced in@7#. This representation is equiva
lent to the so-called unitary representation where the non
tary evolution of the system is regarded as a part of
unitary evolution of some larger system. Equation~2! con-
tains unitary transformations, nonselective measureme
partial traces, etc. For a non-Markovian caseK̂ also depends
on the ‘‘history’’ from some initial timet0 to t8 @8#.

If the evolution of the system is in thestationary Markov-
ian regime then

K̂~ t8,t !5K̂~ t82t !. ~3!

Stationary Markovian regime is a reasonable conjectur
the system is not far from equilibrium@9,8#, or it can be
PRE 581063-651X/98/58~1!/1148~4!/$15.00
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described by a non-Hermitian time-independent Hamilton
@8# or by quantum Langevin equations@10#.

One of the most important quantities which can be d
fined for statistical systems is entropy@9,8,1,2,4,5#. This
quantity was introduced in quantum statistical physics
von Neumann

S~r!52trr lnr. ~4!

The concept of entropy has at least three main ingredien
In the first, entropy of a macroscopic statistical syste

can only increase if the system tends to equilibrium. The
fore entropy is maximal at this state. This is the well know
H theorem. We want to stress that increasing of Eq.~4! with
time can be violated if the evolution of the system is n
stationary or Markovian@9,8# or the system is open or me
soscopic@11#. For example, the entropy of von Neumann c
exhibit exactly periodic behavior for some open syste
@12#. This means that Eq.~4! is not the relevant statistica
function for such systems. Entropy is an additive functio
and also invariant of a unitary transformation.

In the second, entropy can be regarded as a measure o
lack of information about a system. ThereforeS(r) should
increase after a coarse-graining procedure@1,8,5#

SS (
i

pir i D>(
i

piS~r i !, (
i

pi51,pi>0 ~5!

where the information about coordinatei is lost (i can also
be continuous!.

In the third, entropy can be considered as a measure o
amount of chaos, or, to what extent the density matrixr can
be considered as ‘‘mixed.’’ Indeed, the non-negativeS(r) is
zero for a pure density matrix, and is maximal for homog
neousr. Entropy also is an additive quantity. Equation~4!
can also be viewed as one of the basic statements of equ
rium statistical physics@9,8,4#. For example, after severa
assumptions the most important relation in thermostat
TdS5dE1pdV, can be derived from Eq.~4! ~where all
symbols have their ordinary meaning!.

Now the following questions arise. Is it possible to defi
an entropylike function for a mesoscopic statistical system
for an open system? Is it possible to save in this definit
the main aspects of usual entropy? A large number of pa
and books is devoted to these questions@9,8,13#. The answer
1148 © 1998 The American Physical Society
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is ‘‘yes’’ at least in the case when the evolution of a syst
is stationary Markovian, and has a well defined station
distribution. The concrete form of this distribution is not im
portant. Before the definition we need some mathematic

Quantum relative entropy between two density matri
r1, r2 is defined as

S~r1uur2!5tr~r1lnr12r1lnr2!. ~6!

This positive quantity was introduced by Umegaki@14# and
characterizes the degree of ‘‘closeness’’ of density matri
r1, r2. The properties of quantum relative information we
reviewed by Ohya@15#. Here only two basic properties ar
mentioned

S~r1uur2!>S~K̂r1uuK̂r2!, ~7!

S„lr11~12l!r2uuls11~12l!s2…

<lS~r1uus1!1~12l!S~r2uus2!, ~8!

where 0<l<1. The first inequality was proved by Lindbla
@16#.

Now for a system with stationary distributionrst, and
Markovian stationary evolution operatorK̂ the following
function is defined:

2S„r~ t !uurst…. ~9!

This function is additive, and also increases after coa
graining procedure as we see from Eq.~8!. Further, Eq.~7!,
which can be written as

2S„K̂r~ t !uurst…>2S„r~ t !uurst…, ~10!

is theH theorem for Eq.~9!.
The definition~9! is closely related to the functions whic

are used in usual equilibrium statistical physics. A very la
closed statistical system can be described by microcanon
distribution whererst can be represented as a unit matrix~up
to some unessential factors!. In this case Eq.~9! reduces to
Eq. ~4! ~at least in the case of finite dimensional Hilbe
space!, and from Eq.~10! we have the usualH theorem.
Further, it is well known that for a closed macroscopic s
tem canonical and microcanonical distributions are equ
lent ~except some special cases like second-order phase
sitions!. But in some sense canonical distribution has a lar
area of application because it can describe some mesos
or quasiopen systems@8,4#. If we takerst5exp(2bH)/Z in
Eq. ~9! ~where b is inverse temperature, andH is Hamil-
tonian! then

S„r~ t !uurst…2 ln Z5tr~r lnr!1btr~Hr!5bF, ~11!

whereF is the usual free energy. Therefore for the case
canonical distribution we have a slightly different form ofH
theorem: the free energy can only decrease if the sys
tends to equilibrium@9,8,4,13#.

Is the physically relevant generalization of von Neuma
entropy defined uniquely? This important question was
vestigated in@17#. The author showed that Eqs.~7! and ~8!
with some other mathematical conditions are sufficient
the determination of Eq.~6!.
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The conclusion is the following: Eq.~9! is a correct gen-
eralization of von Neumann entropy to the more gene
case, and the generalized H theorem can be proved with
assumptions about the evolution of the system only.

Now the following question arises. Can we generalize E
~7! without any restrictions? If the answer is yes, then we c
prove with this result a more general relation. Let us assu
in formula ~7! that

K̂5cĈ11~12c!Ĉ2 , ~12!

where Ĉ1 is defined by Kraussian representationAm
5um&^0u, ^muḿ&5dmm8 , ^0u0&51, 0<c<1. In other
words, for any operatorr, Ĉ1r5u0&^0u. Now from Eqs.~7!
and ~8! we get

S~K̂ruuK̂s!5S„cĈ1r1~12c!Ĉ2ruucĈ1s1~12c!Ĉ2s…

<cS~Ĉ1ruuĈ1s!1~12c!S~Ĉ2ruuĈ2s!

<~12c!S~ruus!. ~13!

We see that ifK̂ is represented in the form~12! the ordinary
Lindblad inequality can be strengthened.

Now we need some general results from the theory
linear operators@18#. Let two Hermitian operatorsA andB
have the spectraa1<•••<an , b1<•••<bn . For the spec-
trum c1<•••<cn of the operatorC5A1B we have

a11bk<ck<bk1an , b11ak<ck<ak1bn , ~14!

wherek51, . . . ,n. If

r85K̂r5cĈ1r1~12c!Ĉ2r5cu0&^0u1~12c!s,
~15!

and r18<•••<rn8 , s1<•••<sn are the spectra ofr8, s
then we have

r182c<s1~12c!<min~r18 ,rn82c!,
~16!

max~r18 ,rk82c!<sk~12c!<rk8 ,

wherek52, . . . ,n. We definec(K̂,r) as the minimal eigen-
value of r8 and c(K̂)5minrc(K̂,r) where minimization is
taken by all density matrices for the fixed Hilbert spac
With the well known results of operator theory@18# we can
write

c~K̂ !5min
r

min
^cuc&51

^cuK̂ruc&, ~17!

where the second minimization is taken by all normal vect
in the Hilbert space. For any density matrixr we get to the
formula ~12! wherec is defined in Eq.~17! and Ĉ2 is some
general evolution operator. Now from Eqs.~12!, ~13!, and
~17! we get the strengthened Lindblad inequality

~12c!S~r1uur2!>S~K̂r1uuK̂r2!. ~18!

Equations~17! and ~18! are our general results. Of cours
there are many evolution operatorsK̂ with c(K̂)50 but later



f

-
th

Th
e-

at

ial
e

d
ca

en
in
tu
m
tio
r
ua

fi
sic
e

of
in
n

py
to
a

h

m

n-
d

n

ua
o

e-

of
his

ing
in

al

f

r a
ent

m

lity

lt

The
of

n-
si-

s-
is

1150 PRE 58BRIEF REPORTS
we shall show that our results can be nontrivial because
some simple but physically important casec(K̂) is nonzero.
From Eqs.~17! and~18! we immediately get to the strength
enedH theorem which gives us some information about
speed of relative entropy decrease. An analog of Eq.~18!
exists also in classical information theory@19#. Equation~18!
can also be regarded as a bound for entropy production.
quantity is very important in nonequilibrium statistical m
chanics@9,8#.

We now discuss application of this result to quantum d
processing.

Quantum information theory is a new field with potent
applications for the conceptual foundation of quantum m
chanics. It appears to be the basis for a proper understan
of the emerging fields of quantum computation, communi
tion, and cryptography~see@6# for references!. Quantum in-
formation theory is concerned with quantum bits~qubits!
rather than bits. Qubits can exist in superposition or
tanglement states with other qubits, a notion completely
accessible for classical mechanics. More generally, quan
information theory contains two distinct types of proble
The first type describes transmission of classical informa
through a quantum channel~the channel can be noisy o
noiseless!. In such a scheme bits are encoded as some q
tum states and only these states or their tensor products
transmitted. In the second case arbitrary superposition
these states or entanglement states is transmitted. In the
case the problems can be solved by methods of clas
information theory, but in the second case new physical r
resentations are needed.

Mutual information is the most important ingredient
information theory. In classical theory this quantity was
troduced by Shannon@19#. The mutual information betwee
two ensembles of random variablesX, Y ~for example, these
ensembles can be input and output for a noisy channel!,

I ~X,Y!5H~Y!2H~Y/X!, ~19!

is the decrease of the entropy ofX due to the knowledge
aboutY, and conversely with interchangingX and Y. Here
H(Y) andH(Y/X) are Shannon entropy and mutual entro
@19#. Mutual information in the quantum case must take in
account the specific character of the quantum information
it is described above. The first reasonable definition of t
quantity was introduced by Lloyd@20#, and independently by
Schumacher and Nielsen@21#. Suppose a quantum syste
with density matrix

r5(
i

pi uc i&^c i u, (
i

pi51. ~20!

We only assume that^c i uc i&51 and the states may be no
orthogonal. The noisy quantum channel can be describe
some general quantum evolution operatorK̂.

As follows from the definition of quantum informatio
transmission, a possible distortion of entanglement ofr must
be taken into account. In other words, a definition of mut
quantum information must contain the possible distortion
the relative phases of the quantum ensemble$uc i&%. Mutual
quantum information is defined as@20,21#
or
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I ~r;K̂ !5S~K̂r!2S„1̂R
^ K̂~ ucR&^cRu!…, ~21!

1̂R
^ K̂~ ucR&^cRu!5(

i , j
Apipj uf i

R&^f j
Ru ^ K̂~ uc i&^c j u!.

~22!

Where S(r) is the entropy of von Neumann andcR is a
purification ofr,

ucR&5(
i

Api uc i& ^ uf i
R&, ^f j

Ruf i
R&5d i j , ~23!

trRucR&^cRu5r. ~24!

Here$uf i
R&% is some orthonormal set. The definition is ind

pendent of the concrete choice of this set@6#. Mutual quan-
tum information is the decrease of entropy after the action
K̂ due to the possible distortion of entanglement state. T
quantity is not symmetric with respect to the interchang
of input and output and can be positive, negative, or zero
contrast with Shannon mutual information in classic
theory.

It has been shown that Eq.~21! can be the upper bound o
the capacity of a quantum channel@22#. Using this value the
authors@22# have proved the converse coding theorem fo
quantum source with respect to the so-called entanglem
fidelity @6#. This fidelity is absolutely adequate for quantu
data transmission or compression.

In Ref. @21# the authors prove a data processing inequa

I ~r;K̂1!>I ~r;K̂2K̂1!. ~25!

The quantum information cannot increase after action ofK̂.
In @22# we found an alternative derivation of this resu
which is simpler than the derivation of@21#. In the present
paper we show that this inequality can be strengthened.
data processing inequality is a very important property
mutual information. This is an effective tool for proving ge
eral results and the first step toward identification of a phy
cal quantity as mutual information.

Now we briefly recall the derivation of the data proces
ing inequality. The formalism of relative quantum entropy
very useful in this context.

We have

S„1̂R
^ K̂~ ucR&^cRu!uu1̂R

^ K̂~rR
^ r!…

52S„1̂R
^ K̂~ ucR&^cRu!…1S~rR!1S~K̂r!. ~26!

Here

rR5(
i , j

Apipj uf i
R&^f j

Ru^c i uc j&. ~27!

Now from the Lindblad inequality we have

S„1̂R
^ K̂~ ucR&^cRu!uu1̂R

^ K̂~rR
^ r!…

>S„1̂R
^ K̂1K̂2~ ucR&^cRu!uu1̂R

^ K̂1K̂2~rR
^ r!…. ~28!
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From this formula we have Eq.~25!.
Now we can prove the strengthened data processing

equality. Let K̂2 in ~28! be represented in the form~12!.
From Eqs.~7! and ~12! we get

S„1̂R
^ K̂2K̂1~ ucR&^cRu!uu1̂R

^ K̂2K̂1~rR
^ r!…

<2~12c!S„1̂R
^ Ĉ2K̂1~ ucR&^cRu!…

1S~rR!1~12c!S~Ĉ2K̂r!. ~29!

And we have

„12c~K̂2!…I ~r;K̂1!>I ~r;K̂2K̂1!. ~30!

Now we consider the simplest example of a noisy quant
channel: A two-dimensional, two Pauli channel@23# with the
following Krauss representation:

A15Ax1̂, A25A~12x!/2s1 ,

A352 iA~12x!/2s2 , 0<x<1 ~31!
es

-

no
a
-

ry
n-
where 1̂, s1, s2 are the unit matrix and the first and th
second Pauli matrices. Equation~31! also has physical mean
ing as an evolution operator for a two-dimensional open s
tem.

Any density matrix in two-dimensional Hilbert space ca
be represented in the Bloch form

r5~11aW sW !/2, ~32!

whereaW is a real vector withuauW<1. Now we have

K̂TP@~11aW sW !/2#5~11bW sW !/2, ~33!

where bW 5„a1x,a2x,a3(2x21)…. After simple calculations
we get

c~K̂TP!5~12u2x21u!/2. ~34!

We conclude by reiterating the main results: the Lindb
inequality can be generalized. We have presented results
only about increasing of entropy and decreasing of mut
quantum information but also about the speed of these
cesses.
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